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Maxwell-Boltzmann statistics provides the adequate mathematical background 
allowing to define similarity measures involving molecular energy surfaces and electro- 
static potential maps. Boltzmann similarity measures are described and various illustra- 
tive examples are used to show the practical viability of the theory. A new molecular 
similarity index is also presented. Finally, hybrid measures involving Boltzmanr/and 
density distributions are defined. 

1. Introduct ion  

During the past sixteen years our laboratory has initiated and developed the the- 
oretical framework of Molecular Quantum Similarity (MQS) [1-4] as well as some 
auxiliary techniques have been described [5] and the whole applied to several chem- 
ical problems [2]. As a consequence, MQS Measures (MQSM) appear to be a fun- 
damental tool [4a] in this field. 

At the same time, various authors have presented the comparison of the 
Molecular Electrostatic Potential (MEP) maps between two molecules [6]. While 
the potential involved integral divergence was taken into account in some papers 
[lc,d], the rest of the literature did not mention this feature. Some studies circum- 
vented the problem by using a linear combination of Gaussian functions approach 
[6d], which is almost the same as to transform the MEP into a density, while other 
authors tried to use statistical indexes [7] to do the job. Another answer was given 
recently by our laboratory [1 o] in a MQSM general definition context, but this took 
into account the MEP electronic part only. In any case, the unsatisfactory compu- 
tational pattern is evident when MQSM are tried, instead of density functions, in 
comparisons between potential energy surfaces. Still no complete procedure is 
operative and as far as our knowledge of the MQS state-of-the-art goes, up to now 
it has not yet been described. 

In previous papers a clear statement of the correct definition of MQSM has been 
made [lk]. It was an insistent description of the need to use as MQSM basis sets 
definite positive functions, like those furnished by the density matrix elements. This 
was still clearly established when approximate, highly accurate density functions 

© J.C. Baltzer AG, Science Publishers 



248 R. Carbb-Dorca, E. Besal(~ / Extending molecular similarity to energy surfaces 

were computed [3]. This was done due to the mathematical concept of  measure, 
see ref. [8] for more details. 

However, energy surfaces are not usually behaving like density matrices. Take 
a MEP function as a genuine example. A MEP has positive and negative regions, 
and due to the discontinuities present, it is not square summable without using 
appropriate weight functions [1 c,d]. 

In the present paper we try to find a possible general solution to this problem: try- 
ing to somehow uniform the quantum and statistical mechanics definitions of  simi- 
larity measures. First, we describe a simple recipe, then we deal with various naive 
examples, while a final application of  the previous theoretical results closes the 
discussion. 

2. H o w  similar is one  energy surface to another?  

So far MQSM deal with density functions and these, according to quantum 
mechanically well-stablished statements, are to be considered as statistical prob- 
ability distributions. MQSM are nothing but a generalization of  volumetric evalua- 
tions [8]. Similarity between energy surfaces must be defined coherently within a 
new framework bearing the same characteristics in MQSM problems. 

Fortunately, there is an immediate solution to the problem: Boltzmann distribu- 
tions [9] will t ransform non-definite energy surfaces into definite positive, square 
summable functions. Then one can deal with the comparison of  statistical probabil- 
ity distributions and in this way it can be possible to define molecular similarity 
measures over electronic energy surfaces of any origin. 

Therefore, let us set up the simple mathematical framework in the following 
way: 

Let EA (r) be an energy surface attached to some state of  an electronic system A. 
The vector r corresponds to the system's chosen degrees of freedom. A Boltzmann 
Partit ion Function (BPF)pA(r)  [9] can be associated to the energy surface by 
using 

PA (r) = 0] 1 exp(--EA (r)/KT), (1) 

where K is the Boltzmann constant, T the temperature and OA is a normalization 
constant,  defined as 

OA = Jz) W(r)exp(-EA(r)/KT) dr, (2) 

W(r) being an optional weight operator attached to the domain of  integration D. 
Such a weight function can be used to override the possible divergences of  the pre- 
vious integral, due to some particular forms of the energy surface: for instance, in 
some cases when EA (r) ---* 0 if Irl --* oo. 

Now, suppose that the partition functionps(r) is also known for a state of some 



R. Carbb-Dorca, E. Besal(t / Extending molecular similarity to energy surfaces 249 

system B, then a similarity measure can be simply defined in accordance wi.th the 
already described definitions of MQSM, which can be found in ref. [2d]: 

BAs(f~) = fD fD pA(rl)f~(rl,r2)ps(r2) dr, dr2, (3) 
1 2 

where fl (rl, r2) is a weighting positive definite operator. Let us refer to the integrals 
BAs(f~) as Molecular Boltzmann Similarity Measures (MBSM). 

A particular and very common case of the previous equation ~trises when using 
f~(n, rE) = 6(rl -- rE), a Dirac delta function, as an operator in (3): 

8An = f1)pA(r)pn(r) dr. (4) 

Next, in the same way as in the case of MQSM [4c], a pair, C-class and D-class, 
of similarity indices may be defined. For the C-class index, 

BAn 
CAn --  (BAABBB)I /2  ' (5 )  

and for the D-class, 

DAn = (BAA + Bss - 2BAB) 1/2 • (6) 

The index CAs may be interpreted as a cosine-like function of the angle sub- 
tended by the BPFs PA (r) and ps(r), while DAn corresponds to an Euclidean dis- 
tance-like index between both functions seen as two points in an infinite- 
dimensional BPF space. 

3. A normal ized  definition of  similarity m e a s u r e s  

The BPFs are normalized in the following sense: 

W(r)pa(r) dr= O]l ~ W(r)exp(-EA(r)/KT) dr= 1, (7) 

so the MBSM Bas ofeq. (4) may also be expressed by means of the integral 

san = f1) exp[-(Ea(r) + Es(r))/KT] dr, (8) 

in the same way as using normalized first order density functions in the realm of 
MQSM: 

= NjIN~ 1/pA(r)ps(r) dr, (9) Zas 
d l) 
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where {PA, PS} are density functions for systems A and B, respectively, and  

NI --- £ pi(r) dr,  I = A , B ,  (10) 

is the n u m b e r  of  electrons of  system I found in the integrat ion domain  D. 
It seems tha t  the measure  (9) will be a choice for M Q S M  coherent  with the 

M B S M  definit ion (4). Previously, a related M Q S M  has been used employing  uni t  
normal ized  density funct ions [3]. 

The  normal iza t ion  does not  have any effect on the M B S M  C-class index (5) nor  
on the one based on MQSM,  though  does have some influence on both  the D-class 
index values. 

4. Illustrative examples 

In order  to test the previous ideas let us propose  various simple examples dealing 
with naive energy functions.  

(a) Vibrationalpotential functions 

1. Basic form. Let us deal with a quadrat ic  potent ial  like a x  2, where a is a charac- 
teristic cons tant  of  system A involving the factor (KT) -1, see below. The  
Bol tzmann  n o r m  may  be compu ted  this t ime as the wel l -known integral [11 ] 

0A = e x p ( - a x  2) dx = , (11) 
OO 

where the weight  opera tor  W has been set to the unity. The M B S M  is wri t ten by 
means  of  

;" BAn = (OAOB) -1 exp(-- (a  + fl)x 2) dx = rr -1/2 aft 1/2 
( x )  

= (rcKT) -1/2 ~ (12) 

if a = a(KT) -1 and [3 = b(KT) -1, while the self-similarity measure  for system A 
can be wri t ten as 

BAA=(TrKT)-I '2(2)I '2,  (13) 

with an equivalent  expression for system B. 
In this case, the C-class index will appear  to be 

(ab) l/z 
C ~ s - ! ( a + b )  , (14) 

2 
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that is, the ratio between geometric and arithmetic means can be used to construct 
a good C-class index, comparable to more sophisticated cases [4c]. 

2. Generalized measures. One can define a weighted Boltzmann similarity meas- 
ure as 

eAB(x ~ )  = (0A0.) -~ x ~ exp[--(~ +/3)~1 dx, (15) 

the partition functions being defined as in (11). The integral in (15) is well known 
to be [11] 

f += x ~ 3 )x  21 dx - exp[- (a  + 
oo 

so, in this case, 

n[! (o~ -~j )  2n+l~ BaB(X 2n) -- 2nTrl/2 

and self-similarity will be defined as 

n![ 
BAA (X 2~) = 2n+l 7r 1/2 (2a) (1-2~)/2. 

The corresponding C-class index is given by 

( ( a / 3 ) 1 / 2 )  2"+1 
c ~ B ( x ~ )  = l (~  +/3)  

2 

2"(a +/3)" ' (16) 

(17) 

(18) 

(19) 

(b) Torsionalpotential functions 

When the potential energy is defined as the torsional terms appearing in the usual 
formalism of molecular force fields [10], 

EA = UA cos(n~b), (20) 

where UA and n are constants, the Boltzmann norm may be computed by using 

= fo w( )exp[-(UA/KT)cos(nq )] d~b, (21) 

where the weighting operator depends on the angle q~, and the domain of integration 
D can be taken as the interval [0, 7r/n]. 

For the case when W(q~) = 1, it can be easily shown that the normalization con- 
stant is 

OA = --Io , (22) 
n 
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the funct ion  Io being defined as 

Io(z) = ~ , (23) 
k=0 

a zeroth order  modif ied Bessel funct ion of  the first kind [11]. 
Ano the r  trivial case is obta ined when W(q~) = sin(n~b); then the normal iza t ion  

cons tant  becomes 

2KT . , [ UA'~ 
OA = .-?77-- s m n | - f f - ~ / .  (24) 

n ~ A  \ l"- l  / 

(c) Atomic electrostatic potential functions 

Suppose an a tomic  positive electrostatic potential  defined as a C o u l o m b  
function: 

EA = ZA Ir1-1 , (25) 

where ZA is an a tomic  charge. Then  a Bol tzmann no rm may  be c o m p u t e d  as 

OA = fD W(r)exp(--TA[rl-l) dr, (26) 

where 

7A = ZA (KT) -1 , (27) 

and the weighting opera tor  W mus t  be defined in order  to skip the divergence of  
the in tegrand when Irl -+ oo. 

In general,  for energy potentials  of  the type E(r)  = ~lrl-", ~ being a constant ,  
the weighting operators  a t tached to the whole tr i-dimensional  space integrat ion 
domain ,  D = R 3, can be defined in the fo rm of  W(r) = Irl-",  with m > 3. 

For  the potent ial  funct ion analyzed here, a good choice is to take the weight  
opera tor  defined as W(r) = Irl-4, then the normal iza t ion  cons tant  becomes 

OA = 4rr"/A 1 • (28) 

It is easy to see that  the a t tached BPF has the expression 

PA (r) = 7.~ 1 exp(--TA Irl-a).  (29) 

By using a pair  of  BPFs like the one defined in eq. (29) a M B S M  can be c o m p u t e d  
by evaluat ing the integral 

/o BA. = (VAfn)-147r fZ(Irl) exp[--Ir1-1 (TA + 7B)/KT] dr. (30) 

Choos ing  the opera tor  a(Ir l )  = Ir1-4 and reordering the terms, yields 
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~A~. _ ( x r ) -~  ZAZB 
BAn = "YA + ' r B  ZA + Z s  ' 

while self-similarities may easily be deduced as having the form 

"Yx (KT)_~ Zz  I = A , B .  1 3 .  = --ff = -~, 

(31) 

(32) 

So in this case, the C-class index is deduced to be 

(ZAZB)  1/2 

CAB--½(ZA+Z~)' (33) 

that  is, the ratio of the geometric to the arithmetic mean of atomic charges is also 
found. F rom now on this index will be referred to as the statist ical  index. The  statis- 
tical index form is equivalent to the one found in eq. (14) in the case of  the Gaussian 
potential studied above. The origin of this feature can be found in the fact that Ir1-1 
may be expressed as a Gaussian transform of the type [11,12] 

Ir1-1 = ~r -~/e exp(-Ir l2x 2) d x .  (34) 
oo 

(d) Lennard-Jones  potent ia l  func t ions  

The ideas presented in the previous example can be applied to the study of  
Lennard-Jones (q-p) potential functions [9d, 13], which can be written as 

E(r )  : alrl -q - blrl -p , (35) 

where a and b are constants depending on the system under study. 
A (q-p) Lennard-Jones potential function is more suitable to represent a realistic 

molecular energy function than the previous examples. In fact, this kind of poten- 
tial has a form which resembles the shape of the electronic plus nuclear energy of a 
diatomic molecule bound state. 

The Boltzmann norm in eq. (2) can be written in this case by means of  the 
integral 

/5 OA = 47r W(Irl)lrl e exp(-c~Alrl -ap + 3AIrl -p) dr,  (36) 

where A is a constant integer and C~A and/3A are the Lennard-Jones original con- 
stants divided by K T .  Thus, the most usual values producing the well-known (12-6) 
Lennard-Jones potential are A = 2 and p = 6. Choosing the weight function as 
]rl -(3+p) and expanding as a power series the positive exponential part, after rear- 
rangement the norm (36) can be given as 
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47r N-~ f/3tAF(L~)' ~ 
OA = - ~ Z - . , [ ~ l  " (37) 

t = 0 \ .  A / 

The Boltzmann measure (3) can be readily obtained in a similar way without 
further problem. The particular case with A = 2 is worth mentioning because 
eq. (37) may be simplified due to the possibility of directly evaluating the corre- 
sponding norm (36) [11]: 

exp(--aAx 2 + flAX) dx OA = PJo 
/2 2~ 2 - - - -~exp(f l~/(4aA))  [1 + erf(t3A/(2a~/2))], (38) 

erf(x) being the error function. 

5. A new similarity index: The statistical index 

From the definition of MBSM it may be deduced that a suitable similarity index 
between two systems, A and B, of which some definite positive properties are 
known, {aA, aS}, say, can be defined as 

f-(aA~--~B)'/2 ~ (39) cA, = + o ,B) , / '  

~(x) being some well-behaved function. For instance, in eq. (14) ~(x) = x112; in 
eq. (19) one has qo(x) = x (2n+1)/2, while in eq. (33) ~(x) = x. 

In this sense, one can say that multiple system comparisons may be performed 
by means of the appropriate ratios between geometric means: 

"7 = f l  ,~ai]i=l ' (40) 

and arithmetic ones: 

1 n 
# = - ~ . a i ,  (41) 

n/__--~ 

a s  

CAs= ~ ( ~ )  . (42) 

The ratio in eq. (42) will tend to unity when all the applied systems are equal 
and will become zero when one of the properties, ak, say, goes to infinity. 
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This is so because ifak >> Oti, '~i ~ k, then 

limT-"~IH(ai)l/n]alk/n {I-I{ l/nl (kl-n)/n 
ak-"*oo # - -  ~ = OLi) n a  oC a k  I = O . 

l i~k  n O~k l i~k  .] 
(43) 

The form of the C-class statistical index, as defined in eq. (33), resembles the 
one proposed by Hodgkin and Richards [6c] in the MQS framework. Then, as it 
was shown recently that Carb6 and Hodgkin-Richards indices are related [4c], it 
must be expected that it is also related to the Carb6 index. 

As an application example, Tables 1 to 3, reproduced for three different molec- 
ular families: 13 feromones [14] (Table 1), 9 fluoro and chloromethanes [4d] 
(Table 2) and the first 16 linear alkanes (Table 3), contain the mean quadratic dif- 
ferences (lower triangle) and correlation indices (upper triangle) between various 
matrices of C-class indices: Carb6, Hodgkin-Richards, Tanimoto, Petke, a new 
index defined recently [4c] that takes into account the discrete representation of 
density functions, and the statistical index. This last index is obtained using as 
parameters the molecular self-similarity measures, that is: ZA = ZAA and 
Z s  = Z s s .  Also, the function in the statistical index definition (39) has been taken 
tobe ~(x) = x. 

From the inspection of the three tables it can be commented that, in agreement 
with ref. [4c], Carb6 and Hodgkin-Richards indices are almost the same as well as 
the Petke and Tanimoto pair of indices, which present an even more close relation- 
ship. Curiously enough, it can be seen how the statistical index values differ substan- 
tially from the Hodgkin-Richards, Tanimoto and Petke indices, while they are more 
similar to the Carb6 index and are even closer to the index defined in ref. [4c], follow- 
ing the fact that the discrete and the statistical indices present the most accused dif- 
ferences with the rest. These features are repeated in all the studied cases. 

It must be finally said that the statistical index discussed here can be used in a the- 
oretical field of molecular parameters, as well as in an empirical set of experimental 
ones, becoming in this way a general tool for molecular similarity purposes. As the 

Table 1 
Mean quadratic error (lower triangle) and correlation coefficient (upper triangle) between the 
matrices containing C-class indices computed for a family of 13 feromones [14]. CAR, HR, TAN, 
PET, DC and S stand for the Carb6, Hodgkin-Richards, Tanimoto, Petke, the index defined in ref. 
[4c] and the statistical index, respectively. 

Index CAR HR TAN PET DC S 

CAR 0.964377 0.990046 0.960522 0.608673 0.603641 
HR 0.113680 0.980275 0.996425 0.394171 0.791545 
TAN 0.186414 0.124184 0.979306 0.507425 0.669886 
PET 0.147264 0.501806E-01 0.907430E-01 0.387813 0.788576 
DC 0.365056 0.463141 0.549909 0.502976 -0.215457 
S 0.356485 0.375519 0.495207 0A14764 0.336264 
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Table 2 
Mean quadratic error (lower triangle) and correlation coefficient (upper triangle) between the 
matrices containing C-class indices computed for a family of 9 fluoro and chloromethanes. CAR, 
HR, TAN, PET, DC and S stand for the Carb6, Hodgkin-Richards, Tanimoto, Petke, the index 
defined in ref. [4el and the statistical index, respectively. 

Index CAR HR TAN PET DC S 

CAR 0.982560 0.962126 0.931322 0.918445 0.418522 
HR 0.560301E-01 0.984943 0.979310 0.872719 0.571239 
TAN 0.180902 0.138866 0.983677 0.798608 0.553073 
PET 0.158297 0.106957 0.606572E-01 0.779086 0.670202 
DC 0.267756 0.308416 0.443481 0.409545 0.272597 
S 0.397070 0.425594 0.553890 0.513894 0.175527 

parameters, needed to construct the index, come individually from every molecule 
in the compared set, a mixture of theoretical and empirical values, taking into 
account possible sign alternations, is also feasible within the statistical index 
definition. 

6. Hybrid similarity measures and QSAR 

In a recent paper, a theoretical background connection between MQSM and 
QSAR was stablished [4b]. A complete equivalent formalism can be applied here 
on the set of MBSM. But here is a new possibility which may connect both kinds of 
similarity measures and, thus, enlarge the possibilities of explaining the success of 
structure-activity or structure-properties relationships. 

In the same way as in the MQSM and MBSM computation, suppose a set of  
molecules M = {mz}, the attached set of densities normalized to one particle 
P = (pi(r)} and a set of energy surfaces E = {El(R)}, which can be used to con- 
struct a set of Boltzmann partition functions B = {pI(R)} by using 

Table 3 
Mean quadratic error (lower triangle) and correlation coefficient (upper triangle) between the 
matrices containing C-class indices computed for a family of 16 linear alkanes. CAR, HR, TAN, 
PET, DC and S stand for the Carb6, Hodgkin-Richards, Tanimoto, Petke, the index defined in ref. 
[4c] and the statistical index, respectively. 

Index CAR HR TAN PET DC S 

CAR 0.999563 0.988464 0.988463 0.977684 0.933585 
HR 0.671489E-01 0.985835 0.985835 0.982039 0.937491 
TAN 0.184479 0.128155 1.00000 0.936706 0.868793 
PET 0.184485 0.128162 0.449830E-04 0.936704 0.868793 
DC 0.265055 0.330410 0.446532 0.446538 0.980182 
S 0.214783 0.277085 0.399194 0.399200 0.716913E-01 
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pI(R) = O-i 1 exp(-Et(R)/KT) (44) 

with 

O~ = ~ W(R)p,(R) dR. (45) 

A correspondence between the sets P, M and B, 

p / ~  rnt ~ P t ,  (46) 

is thus defined. Then, two kinds of Hybrid Similarity Measures (HSM) may be 
defined by computing the integrals 

fij(Ft) = f f p,(R)Ft(R,r)py(r) dRdr (47) 

and 

g.(O) = f f p.(,)O(r.R/pj(R)araR. (48) 

where f~(R, r) and O(r, R) are appropriate operators as defined in eq. (9). The cor- 
responding matrices will not be symmetrical, contrary to the pure cases. 

Let us now associate to every molecule a vector by means of MQSM and 
MBSM projections of  the sets P and B into an n-dimensional vector space: 

Pl ~ Zl = {z j:} (49) 

and 

pI ~ b1 = {b ji}.  (50) 

In this manner,  a new relationship may be envisaged, 

z / ~  mt ~ bl ,  (51) 

as an n-dimensional representation of the set M as a discrete alternative to the con- 
t inuous representation (46). However, the matrix elements formed by the integrals 
(47) and (48) correspond to a new discrete molecular representation involving the 
Cartesian products B ® P and P ® B, respectively, instead of the usual P ® P and 
B ® B attached to the pure MQSM and MBSM. One can thus speak of  another set 
of  molecular representations made by the rows or columns of matrices F = {J~j} 
and G = {gtJ}. For example, by using a column partition F = ( f l , f 2 , . . .  ,fn) and 
G = (gl, g2,. • •, gn), one obtains 

P I ~ f z  A P z ~ g z ,  (52) 

and a reverse relationship when considering rows. 
When the operators of  HSM are the same, f~ = O, then the hybrid measures are 

related by means offzj = g Jr, VI, J, so F = G "r, and provided that the involved 



258 R. Carbb-Dorca, E. Besalft / Extending molecular similarity to energy surfaces 

operators  in similarity measures are definite positive and thus Hermit ian,  a sym- 
metr ic  H S M  can be defined using the symmetr izer  J = (F + G)/2. 

H S M  may  generalize the theoretical background  discussed some t ime ago in 
[4b]. An  integral like (47) may  be used in a possible extension of  the Q S A R  equa- 
tion: 

7rz = (f~)z = (f2 I pz) ~ wrz i ,  (53) 

where 7rz is some proper ty  for molecule mz and w is an u n k n o w n  opera tor  represen- 
ta t ion of  the same dimensionali ty as density pz represented by zz. Now,  eq. (53) can 
be rewrit ten with the help of  H S M  in terms of  the previous u n k n o w n  opera tor  aver- 
age over a Bol tzmann par t i t ion function,  p(R),  that  is, 

= f f p(R)a(R,r)m(r)dg dr= f w(r)pz(r) dr~ wrzz , (54) 

where the new opera tor  w is defined as 

w(r) = f p(R)~(g,r) dR. (55) 

This produces  a very general possible interpreta t ion for the linear coefficients 
in Q S A R  and QSPR least squares equations.  

As an example of  a HSM,  here we present  the applicat ion to the g round  state of  
a hydrogenoid  a t o m  using a nuclear electrostatic potent ial  as an energy surface. 
The normal ized density funct ion is defined as 

Z 3 
p(r) = - - e x p ( - 2 Z r ) ,  (56) 

rr 

Z being the a tomic  charge. The Bol tzmann par t i t ion funct ion is defined as 

4~rKT , ,- 1, 
p ( r ) =  Z e x p t - T r  ) '  (57) 

where 7 = Z(KT) - I .  The evaluat ion of  integral (47) gives different results depend-  
ing on the fo rm of  the opera tor  f2. The three chosen immedia te  results for the hybr id  
self-similarity measure  follow: 

(a) for f~ = Irl-3/2 
l + 2Z6 (rr)1/2 

= - -  e x p ( - 2 Z 6 )  ; (58) f(lr1-3/2) r/ 4Z3/2 

(b) for f2 = Ir1-5/2 

f(Irl  -s/z) = rl e x p ( - 2 Z 6 )  ; (59) 
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(c) for f~ = Irl-3 
f([r1-3) = r/2K0(2Z6), (60) 

where 77 = 167rKTZ 2, 6 = ( 2 / ( K T ) )  1/2 and K0 is the zeroth order modified Bessel 
function of  the second kind [11]. 

7. Conclusions 

Boltzmann similarity measures related to molecular energy surfaces have been 
described. Although in the practical cases, BSM based on molecular energy sur- 
faces will necessarily need numerical integration techniques, it has been shown that 
for simple energy functions, related to electronic, vibrational and torsional phe- 
nomena,  a new set of  similarity measures and indices can be easily computed.  A 
new similarity index, the statistical index: the ratio between geometric and arith- 
metic means of  some set of molecular properties or parameters, has ~also been 
described and compared with well-known indices. QSAR and molecular similarity 
theory can be connected through MQSM and MBSM hybrid measures. The naive 
mathematical  framework developed in this paper fills a gap in the general structure 
of  molecular similarity measures and starts the way to a complete theory on this 
subject. 
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